Radioisotopes in ground soil terra rossa samples from the island of Mljet

Marijana Nodilo¹, Silvia Dulanská², Ľubomír Mátel², Željko Grahek¹, Delko Barišić¹

¹Ruđer Bošković Institute, Laboratory for Radioecology, Bijenička c. 54, 10 000 Zagreb, Croatia ²Comenius University, Faculty of Natural Sciences, Department of Nuclear Chemistry, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia

e-mail: mnodilo@irb.hr

INTRODUCTION

- The main goal was screening of the current state and determination of target radioisotopes activity ratio in *terra rossa* soil samples
- The target radioisotopes were ⁹⁰Sr, alpha emitters (²⁴¹Am, ^{239,240}Pu), as well as naturally occurring and anthropogenic gamma emitters (¹³⁷Cs)
- The radioisotopes distribution in surface soil layers is of the interest because of the possible uptake by plants
- *Terra rossa* is a typical soil developed at carbonate bedrock of the island Previous studies [1,2] of ¹³⁷Cs and naturally occurring gamma emitters activities in the *terra rossa* soil indicated both the nuclear weapon testing and Chernobyl contamination

PRELIMINARY RESULTS

Table 1. Massic activities (Bq kg⁻¹) of anthropogenic radioisotopes in the soil samples

Soil	A (¹³⁷ Cs) Bq kg ⁻¹	A (⁹⁰ Sr) Bq kg⁻¹	A (^{239,240} Pu) Bq kg ⁻¹	A (²⁴¹ Am) Bq kg ⁻¹
1	46.3 ± 3.7	66.0 ± 5.9	0.382 ± 0.033	0.004 ± 0.001
2	18.9 ± 1.5	92.8 ± 8.3	0.505 ± 0.040	0.529 ± 0.051
3	24.7 ± 2.0	133.6 ± 11.9	0.598 ± 0.051	0.061 ± 0.007
3A	123 ± 9.8	209.9 ± 18.7	1.545 ± 0.121	0.376 ± 0.041
4	185 ± 15	330.1 ± 29.4	2.876 ± 0.268	0.286 ± 0.025
4A	140 ± 11	174.6 ± 15.5	3.912 ± 0.32+	0.429 ± 0.069
5	25.5 ± 2.0	198.7 ± 17.7	0.200 ± 0.014	0.957 ± 0.091
6	118 ± 9	204.0 ± 18.2	2.946 ± 0.279	0.243 ± 0.022
7	27.1 ±2.2	125.5 ± 11.2	0.602 ± 0.005	0.208 ± 0.019
8	80.2 ± 6.4	186.2 ± 16.6	2.129 ± 0.190	0.566 ± 0.06
9	82.6 ± 6.6	136.6 ± 12.2	1.750 ± 0.181	0.005 ± 0.001
10	0.5 ± 0.1	131.3 ± 11.7	0.107 ± 0.008	0.007 ± 0.001
11	70.1 ± 5.6	166.4 ± 14.8	1.066 ± 0.102	0.128 ± 0.011

MATERIALS AND METHODS

• The soil was sampled from the Mljet National Park (the north-west part of the island of Mljet, Croatia)

• Activities of ⁹⁰Sr were higher than activities in soil samples collected from the exclusion zone (< 30 km) of the Fukushima Daiichi NPP presented in work of Sahoo and col. who obtained ⁹⁰Sr activity in range from $(3.0 \pm 0.3 \text{ to } 23.3 \pm 1.5)$ Bq kg⁻¹ [5]

Table 2. Massic activities (Bq kg⁻¹) of naturally occurring radioisotopes in the soil samples

Soil	A (⁴⁰ K), Bq kg ⁻¹	A (²²⁶ Ra), Bq kg ⁻¹	A (²²⁸ Ac),Bq kg ⁻¹
1	4.79E+02 ± 1.55E+01	2.54E+02 ± 1.28E+01	7.73E+01 ± 3.45E+00
2	3.82E+02 ± 1.21E+01	1.87E+02 ± 9.37E+00	5.09E+01 ± 2.92E+00
3	5.65E+02 ± 1.61E+01	3.32E+02 ± 1.34E+01	5.77E+01 ± 3.69E+00
3A	5.95E+02 ± 1.42E+01	3.30E+02 ± 1.31E+01	5.14E+01 ± 3.09E+00
4	4.89E+02 ± 1.75E+01	4.32E+02 ± 1.40E+01	6.18E+01 ± 3.46E+00
4A	4.99E+02 ± 1.81E+01	4.87E+02 ± 1.50E+01	6.87E+01 ± 3.77E+00
5	5.03E+02 ± 1.47E+01	1.75E+02 ± 9.24E+00	6.32E+01 ± 2.98E+00
6	3.81E+02 ± 1.36E+01	1.16E+02 ± 1.03E+01	5.65E+01 ± 3.23E+00
7	5.38E+02 ± 1.67E+01	3.45E+02 ± 1.23E+01	6.83E+01 ± 2.65E+00
8	5.30E+02 ± 1.56E+01	4.22E+02 ± 1.32E+01	6.24E+01 ± 3.02E+00
9	3.93E+02 ± 1.32E+01	2.47E+02 ± 1.07E+01	6.29E+01 ± 3.39E+00
10	6.01E+02 ± 1.49E+01	2.03E+02 ± 9.69E+00	8.16E+01 ± 2.40E+00
11	4.49E+02 ± 1.68E+01	2.21E+02 ± 1.29E+01	8.11E+01 ± 2.99E+01

- The samples were prepared by oven-drying at 105 °C during 24 h and subsequently grinded
- Samples for gamma spectrometry determination were prepared in Marinelli beakers and analysed on a HPGe gamma detector (ORTEC)
- After gamma spectrometry measurement, every sample was kept in the burnout furnace at 600 °C for 24 h

Alpha emitters were determinatinated from ashed	
and digested samples	

- Concentrated nitric acid was used for digestion
- Am i Pu are mutually separated on column filled with Anion Exchange Resin (8 moldm⁻³ nitric acid)
- Am preconcentrated with CaC₂O₄ precipitation and isolated by an additional column filled with TRU resin (both resins Eichrom Technologies)
- Am and Pu were co-precipitated with NdF₃, filtered through a 0.2 µm (25 mm) pore size polysulfone membrane filter (Tuffryn HT-200, Pall Corporation) and determined by the ORTEC alpha spectrometer 576A equipped with ULTRATM ion implanted silicon detectors (active area 600 mm²).

• Measured activities of ⁴⁰K were found within the previously reported ranges in *terra rossa* soils in Croatia and Slovenia, while ¹³⁷Cs activities were found higher [1,2]. The activity ratio between ⁹⁰Sr, ^{239,240}Pu and ¹³⁷Cs can be used to predict activities of these hardly detectable radioisotopes.

Table 3. Activity ratio of studied radioisotopes

¹³⁷ Cs / ⁹⁰ Sr	$\boldsymbol{0.417 \pm 0.080}$
^{239,240} Pu/ ¹³⁷ Cs	0.019 ± 0.006
^{239,240} Pu/ ⁹⁰ Sr	0.008 ± 0.002

- ⁹⁰Sr was determined from ashed and digested samples
- 8 moldm⁻³ nitric acid
- Separation on column filled with AnaLig Sr-01 resin (IBC Advanced Technologies) [4]
- Cherenkov counting on TRI CARB 3100 TR (PerkinElmer)

REFERENCES

- [1] Barišić D, Vertačnik A, Lulić S. Caesium contamination and vertical distribution in undisturbed soils in Croatia. J Environ Radioact 1999;46;361-374.
- [2] Vaupotič J, Barišić D, Kobal I, Lulić S. Radioactivity and Radon potential of the terra rossa soil. Radiat Meas. 2007;42:290-297.
- [3] Masson O, Piga D, Gurriara R, D'Amico D. Impact of an exceptional Saharan dust outbreak in France: PM₁₀ and artificial radionuclides concentrations in air and in dust deposit. Atmos Environ 2010;44:2478–2486.
- [4] Dulanská S, Remenec B, Mátel Ľ, Galanda D, Molnár. Pre-concentration and determination of 90Sr in radioactive wastes using solid phase extraction techniques. A. J Radioanal Nucl Chem. 2011;288:705–708.
- [5] Sahoo S, Kavasi N, Sorimachi A, et al. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant. Scientific Reports. 2016;6(23925):1-10.
- [6] International Atomic Energy Agency (IAEA). Environmental Consequences of the Chernobyl Accident and Their
- Remediation: Twenty Years of Experience, Report of the Chern Forum Expert Group "Environment". Radiological assessment reports series. Vienna: IAEA; 2006.
- [7] International Atomic Energy Agency (IAEA). Radiological Conditions at the Former French Nuclear Test Sites in Algeria: Preliminary Assessment and Recommendations. Radiological ant reports series. Vienna: IAEA; 2005.

• After Chernobyl accident ¹³⁷Cs/⁹⁰Sr ratio was 8.5 in the fallout [6]. During IAEA mission in 1999 on testing site in Algeria ¹³⁷Cs/⁹⁰Sr activity ratio of 3.2 was reported for collected samples [7] The preliminary ¹³⁷Cs/⁹⁰Sr ratio obtained in this research, suggests conclusion that determined radioisotopes mainly originated from weapon testing deposition.

Conclusion

moderate

- The presence of the anthropogenic radioisotopes in the collected samples
- Significantly lower ¹³⁷Cs/⁹⁰Sr activity ratio in *terra rossa*, in comparison with majority of previously reported for soils, was found
- Further research, especially ¹³⁷Cs / ⁹⁰Sr activity ratio is required for comprehensive conclusions
- Collected data with the interpretation of obtained results should be a baseline for the estimation of the impact for the possible future radioactive contamination on this protected area

Acknowledgment

This study was supported by the KEGA 002UK-4/2016. Authors wish to thank the Ministry of Science and Education, the Republic of Croatia for M. Nodilo's salary during scientific stay at Comenius University and Prof. RNDr. P. Rajec for help with analysis of gamma spectra.

